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Abstract

Accurate natural frequencies and mode shapes of skew plates with and without cutouts are determined
by p-version finite element method using integrals of Legendre polynomials for p=1–14. The hierarchical
plate element is formulated based on Mindlin’s plate theory including rotatory inertia effects and based on
a skew co-ordinate system. Non-dimensional frequency parameter and mode shapes are presented for a
range of skew angle (b), aspect ratio (a/b), thickness–width ratio (h/b), cutout dimensions and different
boundary conditions. The results were verified by comparison with those available in the open literature.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

Skew plates are characterized by the presence of strong moment singularity at the supported
obtuse corners. No exact solution is suitable for the problem but the analytical approximate
solution by Morley [1] is considered to be accurate enough. This problem attracted much
attention in 1970s with reference to fatigue life prediction of aircrafts with swept wings, which
have an obtuse corner at its junction with the fuselage. Although a number of researchers have
studied the free vibration of clamped, simply supported and free edged skew plates, there is still
the need to obtain reliable results with reasonable effort. A review of previous work is available in
a monograph and in subsequent articles by Leissa [2,3]. Various methods have been attempted to
analyze the free vibration of simply supported skew plates, such as the boundary collocation
technique by Conway and Farnham [4], the Ritz method by Nair and Purvasula [5], and the edge
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function method by Tai and Nash [6]. Chopra and Durvasula [7] used Lagrange equation based
on the normal displacement of plate defined as a double Fourier sine series in the skew co-ordinate
to obtain the approximate frequencies for tapered skew plates. Using the analogy between
membrane and flexural mode of simply supported polygonal plates, Sakata [8] derived the
approximate formula for the fundamental frequency of simply supported skew plates. Nagaya [9]
put forward the analytical solution, which includes the ordinary Bessel function with an integer
order and Fourier expansion for different boundary conditions. Apart from these analytical
treatments, further developments in the vibration problem of simply supported skew plates have
been minimal [3]. Some accurate results for simply supported rhombic and parallelogram plates
have, however, been presented recently by Gorman [10] using the superposition method. Besides
this, some experimental vibration data have surfaced in recent years for simply supported skew
plates due to Rao et al. [11].
Using finite element modelling, Raju and Hinton [12] made significant contributions in

vibration analysis plates including rotatory inertia effects for rhombic plates with various
boundary conditions. They used nine-noded Lagrangian quadrilateral isoparametric plate
elements based on Mindlin’s theory. McGee [13,14] determined the natural frequencies of
skewed and twisted cantilevered thick plates by the Ritz method. Because of merits of hierarchical
element, Bardell [15] applied the Legendre orthogonal polynomials to obtain the natural
frequencies and modes of a flat, rectangular plate. On the other hand, Beslin and Nicolas [16]
proposed a new hierarchical function set built from trigonometric functions instead of
polynomials. However, the studies using these hierarchical plate elements were limited to
analysis of rectangular plates. The hierarchical concept showed fast convergence and
higher accuracy compared with the conventional h-version of the finite element method
(h-FEM). Basu et al. [17] were the first to investigate stress singularities at the obtuse corner
using four fifth order hierarchical Legendre elements to model a quadrant of a simply supported
60o plate under uniformly distributed load. Huang et al. [18] investigated the stress singularities
in the obtuse corners of rhombic plates based on the Ritz method using a hybrid set consisting
two types of displacement function such as algebraic polynomials and the corner function
accounting for corner singularities. Butalia et al. [19] used the Heterosis element for
bending of skew rhombic plates. Based on the Ritz method along with Mindlin’s plate theory,
Liew et al. [20–23] obtained highly accurate results by using the hierarchical Legendre
polynomials.
The p-version of the finite element method (p-FEM) is well recognized as a powerful numerical

modelling tool, which shows the merits of hierarchical nature, well-conditioned system of
equations, fast convergence rate, and simple modelling. The aim of this paper is three-fold.
Firstly, the hierarchical set of integrals of Legendre polynomials is generated ranging from p=1 to
14. Secondly, the energy functional is derived from the skew co-ordinate system with proper
co-ordinate transformations that also include the rotatory inertia effects. Finally, the
accuracy and the convergence characteristics of non-dimensional frequency parameters
and mode shapes are investigated by analyzing skew Mindlin plates with or without cutout
for a range of skew angles (b), aspect ratios (a/b), thickness-to-width ratios (h/b), and
various boundary conditions. The present p-version solutions have been compared with
the published results and the h-version finite element results by using SAP2000 commercial
software.
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2. Formulation of skew Mindlin plates

2.1. Energy functional for skew Mindlin plates

From Fig. 1, the geometric and material configurations of a flat, isotropic, skew plate are
defined by uniform thickness h, length a, oblique width b, skew angle b, Young’s modulus E, shear
modulus G, the Poisson ratio n, and shear correction factor k. The strain and kinetic energies can
be expressed in tensor form as

U ¼
1

2

Z
V

sijeij dV ; ð1Þ

T ¼
1

2

Z
V

q ’ui ’uj; dV : ð2Þ

Using appropriate constitutive relationships, Eq. (1) can also be written as

U ¼
1

2

Z
eT

ij ½D�eij dV : ð3Þ

In this equation, the strain tensor is denoted by eTij ¼ exxeyygxygxzgyz

� �
; V is the volume of the plate,

and [D] is the constitutive matrix. With u1, u2, u3 as the displacement components in x, y and z

directions, and yx(x,y,t), yy(x,y,t) as the rotations along x and y directions, by Green’s definition
of strains, it follows
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Fig. 1. Geometry and co-ordinate system of skew plates.
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The constitutive matrix is given by

½D� ¼

E
ð1�n2Þ

nE
ð1�n2Þ 0 0 0

nE
ð1�n2Þ

E
ð1�n2Þ 0 0 0

0 0 G 0 0

0 0 0 kG 0

0 0 0 0 kG

2
66666664

3
77777775
; G ¼

E

2ð1þ nÞ
; ð5Þ

in which the shear factor, k=0.83333 for n=0.3.
Thus, the strain and kinetic energies in the rectangular co-ordinate system can be expressed in

terms of w, yx and yy as
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12
y2x þ y2y
� �� �

dA; ð7Þ

where r is the mass density per unit volume, and o is the circular frequency. Eq. (7) includes the
rotatory inertia effects that become significant in the lower flexural modes for thicker plates.

2.2. Oblique boundary transformation

As shown in Fig. 1, both the edges of a skew plate may not be parallel to global axes x and y.
So, it is difficult to define the boundary conditions in terms of the global displacements w, yx and
yy. To specify the boundary conditions at such edges, the local edge displacements w, yr and ys

shown in Fig. 2 can be used. Here, yr and ys represent the average rotations of the normal to the
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Fig. 2. Global and local skew co-ordinate system for oblique boundary transformation.
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reference plane, tangential and normal to the oblique edge. Before enforcement of the boundary
conditions at such edges, it is necessary to transform the element matrices corresponding to global
axes (x, y) along which the boundary conditions are specified. Considering yx, yy, yr and ys as
vectors shown in Fig. 2, where g is denoted by g=90�b, the displacement transformation for a
node ‘‘i’’on the oblique boundary is given by

w

yx

yy

8><
>:

9>=
>; ¼

1 0 0

0 cos g �sin g

0 sin g cos g

2
64

3
75

w

yr

ys

8><
>:

9>=
>;: ð8Þ

This transformation relationship will be expressed as

ui ¼ Tij � %uj; ð9Þ

where ui and %uj are the generalized displacement vectors in the global and local edge co-ordinate
systems. The above matrix is valid only for three degrees of freedom per node. For nodes, which
are not located on the oblique boundary, it becomes an unit matrix. Thus, for an n-noded
boundary element, the element transformation matrix can be expressed as

½T � ¼

T1

T2

&

Ti

&

Tn

2
6666666664

3
7777777775
: ð10Þ

2.3. Eigenvalue problem for skew plates

The governing equation of motion may be derived from the Hamilton’s principle, which
requires the functional to satisfy the condition

d
Z tf

ti

P ¼ d
Z tf

ti

ðU � TÞ dt ¼ d
1

2

Z tf

ti

Z
V

tijeij dV dt �
Z tf

ti

Z
V

r ’ui ’uj dV dt

� �
¼ 0; ð11Þ

where d is the variational operator and it moves from the configuration ‘‘i’’ at time ti to the
configuration ‘‘f’’ at time tf. The displacement field over an element can be defined by u=Wue

where ue is the vector of nodal displacements and nodeless coefficients, and W is the interpolation
function in terms of integrals of Legendre polynomials. After differentiating Eq. (11) with respect
to time, the final energy functional expressed in matrix form can be obtained after substituting the
strain–displacement and constitutive relationships.

Pe ¼
1

2

Z
V

½ue�T½T �T½B�TDBTue dV �
1

2

Z
V

d½ue�T

dt
½T �T½C�TrCT

due

dt
dV : ð12Þ
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The minimization of energy functional with respect to the nodal displacement ue for an element
results in

@Pe

@ue
¼
Z

V

ð½T �T½B�TDBTÞue dV �
Z

V

d½ue�T

dt

� �
ð½T �T½C�TrCTÞ

due

dt

� �
dV : ð13Þ

The element stiffness and the mass matrices are then arrived at after mapping into the standard
(x,Z) co-ordinate system as

Ke
ij ¼

Z
Ve

½T �T½B�TDBT dV ¼
Z Z

Ae

½T �T½B�TDBT h det J dx dZ; ð14Þ

Me
ij ¼

Z
Ve

½T �T½C�TrCT dV ¼ I0

Z Z
Ae

½T �T½C�TC T det J dx dZ; ð15Þ

where det J dxdZ=dx dy, Io=rh, Also, [C] is the matrix of shape functions given by

Wi½ �ð3	ð3*nÞÞ¼

C1 0 0 C2 0 0 � � � Ci 0 0 � � � Cn 0 0

0 C1 0 0 C2 0 � � � 0 Ci 0 � � � 0 Cn 0

0 0 C1 0 0 C2 � � � 0 0 Ci � � � 0 0 Cn

2
64

3
75: ð16Þ

The mass matrix in Eq. (15) neglects the rotatory inertia effects of Mindlin plate. So the inertia
term I2=1/(12rh2) should be introduced into Eq. (13) to get the eigen equation for a Mindlin
plate. It may be noted that this mass matrix is consistent but for a homogeneous system can be
approximated as a diagonal one, as shown in Eq. (17)
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which can be expressed in compact form as

½K�p � ki½M�p ¼ 0; ð18Þ

where p is degree of square matrix, li is the eigenvalue with li ¼ fl1?lk?lpg
T; Di is the

eigenvector with Di ¼ fD1?Dk?Dpg
T that is corresponding to li. Also, the eigenvector must

satisfy the orthogonality conditions like DT
i KDi ¼ li and DT

i MDi ¼ I: Standard Houserholder QR
iteration technique is adopted to solve the eigen equation.

3. Hierarchical polynomials set

It is preferable to use shape functions that give a strongly diagonal element stiffness matrix. In
this paper, a hierarchical system of shape functions on the basis of integrals of Legendre
polynomials is used. The first set of 14 shape functions are given in Table 1.
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4. Numerical results

4.1. Skew plates without cut-out

The six different edge conditions considered are shown in Table 2. The symbols S, F, and C
indicate simply supported, free and clamped, respectively. The Poisson ratio (v) is fixed as 0.3. In
the parametric study, three geometric parameters are varied, namely, thickness ratio (h/b), aspect
ratio(a/b) and skew angle (b).
In Tables 3–6 are given the first six modal non-dimensional frequencies, l½¼ ðob2=p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
�

where o is the circular frequency, r is the mass density per unit volume, and D ¼ Eh3=12ð1� n2Þ:
The thickness ratio (h/b) is taken to be 0.001 for thin plates and 0.2 for thick plates. The validity of
the ‘‘thin’’ plate results is confirmed by existing solutions computed by Raju and Hinton [12],
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Table 1

The first set of 14 hierarchical shape functions

p-Level F(x); �1pxp1

1 1

2
(x�1)

2 3

2
ffiffiffi
6

p (x2�1)

3 5

2
ffiffiffi
1

p (x3�x)

4 1

8
ffiffiffiffiffi
14

p (35x4�42x2+7)

5 1

8
ffiffiffiffiffi
18

p (63x5�90x3+27x)

6 1

16
ffiffiffiffiffi
22

p (231x6�385x4+165x2�11)

7 1

16
ffiffiffiffiffi
26

p (429x7�819x5+455x3�65x)

8 1

128
ffiffiffi
3

p
0
(6435x8�13860x6+9450x4�2100x2+75)

9 1

128
ffiffiffiffiffi
34

p (12155x9�29172x7+23562x5�7140x3+595x)

10 1

256
ffiffiffiffiffi
38

p (46189x10�122265x8+114114x6�43890x4+5985x2�133)

11 1

256
ffiffiffiffiffi
42

p (88179x11�255255x9+270270x7�126126x5+24255x3�1323x)

12 1

512
ffiffiffiffiffi
46

p (338019x12�1062347x10+1258042x8�690690x6+172672x4�15939x2+242)

13 1

512
ffiffiffiffiffi
50

p (650038x13�2204475x11+2886812x9�1823250x7+563062x5�75075x3+2888x)

14 1

1024
ffiffiffiffiffi
54

p (2507288x14�9126526x12+13094582x10�9353272x8+3445942x6�608108x4+40540x2�446)
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Table 3

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of skew plates for Case 1 edge condition (a/b=1.0, n=0.3, b=151)

h/b Frequency Non-dimensional frequency l

mode p-FEM Liew [23] Raju [12] Huang [18]

1 2.1149 2.1147 2.117 2.1144

2 4.8841 4.8842 4.903 4.8842

0.001 3 5.6872 5.6856 5.712 5.6848

4 8.0090 8.0090 8.069 8.0087

5 10.5377 10.5372 10.76 10.5374

6 11.0277 11.0337 — —

1 1.80256 1.8560 1.860 —

2 3.72284 3.7856 3.803 —

0.2 3 4.21581 4.2763 4.300 —

4 5.43977 5.5784 5.617 —

5 6.78359 6.8385 6.947 —

6 7.01248 7.0702 — —

Table 4

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of skew plates for Case 1 edge condition (a/b=1.0, n=0.3, b=451)

h/b Frequency Non-dimensional frequency l

mode p-FEM Liew [23] Raju [12] Huang [18]

1 3.5871 3.5800 3.6648 3.5208

2 6.7168 6.7153 6.7632 6.7153

0.001 3 10.1984 10.1756 10.1979 10.1574

4 11.0746 10.9754 11.2467 10.8454

5 14.3240 14.2662 14.8334 14.2660

6 17.1028 17.0518 — —

1 2.87991 2.9129 2.968 —

2 4.79547 4.8736 4.909 —

0.2 3 6.50515 6.6622 6.767 —

4 6.98927 7.0148 7.129 —

5 8.36149 8.4831 8.698 —

6 9.50514 9.5878 — —

Table 2

Definition of different edge conditions

Case Edge 1 Edge 2 Edge 3 Edge 4

1 S S S S

2 S F S F

3 S C S C

4 C C C C

5 C F C F

6 C F F F

K.S. Woo et al. / Journal of Sound and Vibration 268 (2003) 637–656644



Huang et al. [18] and Liew et al. [23], while the results for ‘‘thick’’ plates compare well with those
obtained by Raju and Hinton [12], Liew et al. [23] who consider the effects of shear deformation
and rotatory inertia. In these tables, two boundary conditions of SSSS (Case 1) and CCCC
(Case 4) are considered.
In Tables 3 and 4, the results for Case 1 edge conditions and skew angle b=151 and 451 are

presented; whereas, in Tables 5 and 6, the results are for Case 4 edge conditions and skew angle
b=151 and 451. The p-version solutions obtained with a one-element model and p-level=7 are in
excellent agreement with the results in literatures. In the case of both thin and thick plates, the
relative error in l is found to be less than 1.0%.
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Table 5

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of skew plates for Case 4 edge condition (a/b=1.0, n=0.3, b=151)

h/b Frequency Non-dimensional frequency l

mode p-FEM Liew [23] Raju [12] Huang [18]

1 3.8679 3.8691 3.872 3.8692

2 7.3865 7.3858 7.421 7.3859

0.001 3 8.3757 8.3708 8.410 8.3710

4 11.1094 11.1005 11.180 11.1009

5 14.1151 14.0806 14.370 14.0810

6 14.7423 14.7064 — 14.7070

1 2.7882 2.8058 2.815 —

2 4.6108 4.6298 4.655 —

0.2 3 5.0869 5.0963 5.125 —

4 6.2708 6.3070 6.346 —

5 7.3881 7.4052 7.493 —

6 7.7050 7.7179 — —

Table 6

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of skew plates for Case 4 edge condition (a/b=1.0, n=0.3, b=451)

h/b Frequency Non-dimensional Frequency l

Mode p-FEM Liew [23] Raju [12] Huang [18]

1 6.65751 6.6519 6.665 6.6510

2 10.82592 10.7898 10.9 10.7902

0.001 3 15.22984 15.0276 15.36 15.0271

4 16.1277 15.9342 16.09 15.9313

5 20.5724 19.9395 20.77 19.9373

6 23.67016 23.2526 — 23.2523

1 4.1622 4.1590 4.178 —

2 5.9043 5.9021 5.947 —

0.2 3 7.4729 7.5422 7.628 —

4 7.8007 7.7907 7.849 —

5 9.2237 9.2159 9.374 —

6 10.1056 10.0921 — —
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The p-version of the finite element method enables the accuracy of solution to be improved by
adding hierarchical modes of high order without the need to change geometry of the mesh size.
Accordingly, a p-version convergence study was undertaken and compared with the h-version.
Fig. 3 shows the results of the study in the form of a log–log plot of relative error in non-
dimensional frequency parameter versus the inverse of degree of freedoms.
It is evident from the figure that the convergence rate of p-version for the first mode is much

faster than that for other h-version methods. For a solution with 5% of relative error, Log(1/N) is
approximately �1.72(N=53) for p-version model, and �2.32 (N=209) for Lagrangian nine-node
element. It signifies that to achieve 5% of relative accuracy, the required number of degrees of
freedom by h-version is four times that for p-version. Although uniform and monotonic
convergence with increasing hierarchical shape functions is guaranteed, it is important to realize
that the rate of convergence will, in general, be influenced by both the skew angle and the
boundary conditions from the convergence tests. In this paper, only one convergence test result
has been presented for Case 1 edge condition as an example where the aspect ratio a/b, thickness
ratio h/b and skew angle b were fixed as 2.5, 0.001 and 151, respectively. For this test, three
different p-version finite element models are considered, such as a single-element model with
p-level=3–13, a four-element model with p-level=2–10, and a nine-element model with
p-level=2–7. The results are presented in Figs. 4–6, which show the effect of non-dimensional
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frequencies for the first six modes as the p-level is increased. As p-level is increased, l tends to
converge to the exact solution at a steep angle. It is evident from Fig. 4, that in case of single-
element model, the solution tends to converge at p-level=7. From Fig. 5 it is clear that in the case
of four-element model, the solution tends to converge at p-level = 5. Finally, it can be seen from
Fig. 6 that in the case of nine-element model, the solution tends to converge at p-level=4.
To study the effect of boundary conditions, Tables 7 and 8 are also examined. It can be seen

that the frequency parameters increase with higher constraint (from simply supported to fully
clamped) at the four edges. This is due to the increased flexural stiffness when more edge
constraints are introduced. It may be also noted that a higher frequency response has been
observed as an increase in skew angle enhances the flexural stiffness of plates. Furthermore, the
effect of aspect ratios a/b on the vibratory response has been studied. As shown in Fig. 7, the
frequency parameters decrease as a/b ratios are increased.
To validate the accuracy of p-version finite element model, the non-dimensional fundamental

frequency l1 of thin skew plates with various edge conditions has been compared to those
obtained by Liew et al. [23], Raju and Hinton [12] where six edge conditions are considered.
Table 9 also includes frequencies for plates where the geometric boundary condition for any
simply supported edge has been expressed alternatively as w=0 in the paper of Raju and Hinton
[12]. In this study, however, w=yt=0 is used for simply supported edge by using exact oblique
boundary transformation between global and local skew co-ordinate system shown in Fig. 2.
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However, the difference between two results is negligible except for plates with a high skew angle
and with simple supports on all edge. To study the effect of relative thickness ratio (h/b), the
frequency ratio (o/o0) or (frequency)/(frequency obtained for thin plates when h/b=0.001) is
introduced in Table 10. The (o/o0) values decrease with increasing thickness/span ratio and skew
angle for CCCC edge condition (Case 4) when n=0.3 and a/b=1.0. This trend is most
pronounced for the clamped case. In general, it may be concluded that the frequency parameter
decreases as the thickness ratio h/b increases from 0.001 to 0.2 that can be confirmed in Tables 7
and 8. The decrease in the frequency parameter is due to the effects of shear deformation and
rotatory inertia. These effects are more significant in the higher modes than in the lower modes.
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Table 7

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of skew thin plates with various edge conditions (a/b=1.0, n=0.3,

h/b=0.001)

Edge condition Mode number Skew angle b

01 151 301 451 601

Case 1 1 1.9999 2.1149 2.5380 3.5871 6.9160

2 4.9999 4.8841 5.3333 6.7168 10.662

3 5.0000 5.6872 7.3019 10.198 15.221

4 7.9999 8.0090 8.5009 11.075 20.263

5 9.9999 10.538 12.451 14.324 22.070

Case 2 1 0.9759 1.0333 1.2314 1.6696 2.6195

2 1.6348 1.6696 1.7951 2.0807 2.7684

3 3.7210 3.6440 3.6489 4.0146 5.4625

4 3.9459 4.1988 5.0090 6.0685 7.4425

5 4.7355 5.1343 6.2228 8.0322 10.207

Case 3 1 2.9306 3.1082 3.7505 5.3653 10.124

2 5.5469 5.7455 6.5128 8.4885 14.135

3 7.0208 7.5606 9.4513 12.565 19.713

4 9.5831 9.5315 10.220 14.084 25.735

5 10.356 11.346 13.980 17.271 28.226

Case 4 1 3.6448 3.8679 4.6714 6.6575 12.534

2 7.4373 7.3865 8.2692 10.826 18.344

3 7.4374 8.3757 10.690 15.230 25.023

4 10.965 11.109 12.119 16.128 32.022

5 13.359 14.115 16.839 20.572 32.931

Case 5 1 2.2478 2.3661 2.7767 3.7149 6.0748

2 2.6625 2.7558 3.0890 3.8948 6.1030

3 4.3971 4.5282 5.0186 6.2744 9.8642

4 6.2017 6.5377 7.4977 8.8512 12.075

5 6.7936 7.1130 8.2153 10.603 15.716

Case 6 1 0.3518 0.3627 0.3984 0.4572 0.5395

2 0.8624 0.8803 0.9541 1.1478 1.6442

3 2.1578 2.2522 2.5636 2.7411 3.1791

4 2.7559 2.6661 2.6253 3.2162 4.6977

5 3.1382 3.4233 4.1867 5.1364 6.0521
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From these results, it may be noted that the proposed p-version finite element model gives the
reliable and accurate solutions regardless of the higher corner singularity due to the increase of
obtuse angles and geometric constraints.

4.2. Skew plates with cutout

Published literature on vibration of skew plates with cutout is insufficient and rare, and an
explicit solution for this problem is not established. In the present work, the skew Mindlin plate
with a concentric cutout has been selected as a test problem with h/b=0.1 and v=0.3. The size of
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Table 8

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of skew thick plates with various edge conditions (a/b=1.0, n=0.3, h/b=0.2)

Edge condition Mode number Skew Angle b

01 151 301 451 601

Case 1 1 1.7637 1.8026 2.1239 2.8799 4.7456

2 3.8497 3.7228 3.9967 4.7955 6.7707

3 3.8497 4.2158 5.1391 6.5052 8.5327

4 5.4989 5.4398 5.7002 6.9893 10.401

5 6.5681 6.7836 7.5917 8.3615 11.025

Case 2 1 0.9096 0.9495 1.0853 1.3524 1.7129

2 1.4257 1.3283 1.3794 1.4920 1.7992

3 2.9393 2.7765 2.8038 2.9951 3.5119

4 3.1676 3.2997 3.6761 3.9807 4.1052

5 3.6296 3.6877 4.2027 5.0559 5.4778

Case 3 1 2.2615 2.3605 2.7336 3.5683 5.5062

2 4.0354 4.0975 4.4573 5.3506 7.4286

3 4.5145 4.7792 5.6505 7.0200 9.1025

4 5.9272 5.8785 6.1650 7.4414 10.875

5 6.6626 6.9815 7.9596 8.8146 11.344

Case 4 1 2.6875 2.7882 3.2217 4.1622 6.2381

2 4.6908 4.6108 4.9621 5.9043 8.0706

3 4.6908 5.0869 6.0136 7.4729 9.6438

4 6.2986 6.2708 6.5790 7.8007 11.376

5 7.1768 7.3881 8.2697 9.2237 11.543

Case 5 1 1.7765 1.8465 2.0788 2.5659 3.5597

2 2.0016 2.0505 2.2205 2.6085 3.6353

3 3.1113 3.2000 3.5000 4.1383 5.5005

4 4.0401 4.1801 4.5983 5.2599 6.4559

5 4.3200 4.4432 4.8697 5.8135 7.7400

Case 6 1 0.3383 0.3479 0.3768 0.4225 0.4791

2 0.7432 0.7579 0.8146 0.9644 1.3415

3 1.7797 1.8309 1.9752 2.1001 2.2427

4 2.2712 2.1863 2.1606 2.3855 2.9414

5 2.4097 2.6242 3.0925 3.6684 4.1418
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the cutout a’	 b’ are defined as a’/a=0.25, 0.5 and b’/b=0.25, 0.5. Four hierarchical elements
shown in Fig. 8(a) are used to model it with p-level=5, on the other hand, this skew plate with
cutout is discretized by 256 four-noded elements by SAP2000 program that is also shown in
Fig. 8(b). In case of SAP2000 model, the meshes are refined in the vicinity of obtuse corners due to
moment singularity. Both finite element models are fixed from the convergence tests. Numerical
results have been obtained for two different boundary conditions where the out edge and the inner
edge are referred to as SSSS-FFFF (simply supported–free) and CCCC–FFFF (clamped–free).
The non-dimensional frequency parameters for the six modes are plotted in Figs. 9 and 10 It may
be noted that the non-dimensional frequency parameters become larger as the skew angle b is
increased, especially beyond 451 for both cases. This trend is in line with case without cutout. The
mode shapes are shown in Figs. 11 and 12 for the two stated edge conditions. For each skew
angle, five mode shapes are shown. To verify the proposed element, the present solutions by four
hierarchical elements have been compared with those obtained by SAP2000 program with respect
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Table 9

Comparison of non-dimensional fundamental frequencies(l1) of thin skew plates with various edge conditions

(h/b=0.001, n=0.3, a/b=1.0)

Edge condition Fundamental frequencies for skew angles

01 151 301 451 601

Case 1 Raju [12] 2.0006 2.1172 2.5479 3.6664 7.0582

Present 2.0000 2.1149 2.5380 3.5871 6.9160

Case 2 Liew [23] 0.9759 1.0334 1.2310 1.6649 2.5810

Present 0.9759 1.0333 1.2314 1.6696 2.6195

Case 3 Raju [12] 2.9347 3.1122 3.7497 5.3300 9.8868

Present 2.9306 3.1082 3.7505 5.3653 10.124

Case 4 Raju [12] 3.6481 3.8716 4.6744 6.6652 12.408

Present 3.6448 3.8679 4.6714 6.6575 12.534

Case 5 Liew [23] 2.2462 2.3656 2.7763 3.6933 5.8584

Present 2.2478 2.3661 2.7767 3.7149 6.0748

Case 6 Liew [23] 0.3517 0.3631 0.3983 0.4571 0.5346

Present 0.3518 0.3627 0.3984 0.4572 0.5395
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Fig. 7. Vibratory response to increase of aspect ratio a/b for skew plates with SCSC (Case 3) edge condition (n=0.3,

b=451).
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to edge condition. In Figs. 13 and 14, it can be seen that the non-dimensional frequency
parameters by p-version model agree very well with those by SAP2000 program for six
modes.
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Fig. 9. Frequency parameters for SSSS–FFFF edge condition with respect to skew angle. (a/b=a’/b’=2.0, a’/a=

b’/b=0.5, h/b=0.1, n=0.3).

Fig. 8. Geometry and four-element p-version model for skew plates with cutout. (b) The 256-element h-version model

by SAP2000 for skew plates with cutout.

Table 10

Comparison of fundamental frequencies ratio(o/o0) for thick skew plates with CCCC edge condition (Case 4, n=0.3,

a/b=1.0)

h/b Mode number Fundamental frequencies ratio(o/o0) for skew angles

01 151 301 451 601o

0.1 1 0.9041 0.8866 0.8738 0.8397 0.7410

2 0.8452 0.8357 0.8201 0.7812 0.6841

3 0.8452 0.8280 0.7968 0.7271 0.6122

4 0.8035 0.7918 0.7743 0.7297 0.5696

5 0.7769 0.7626 0.7352 0.6815 0.5801

0.2 1 0.7373 0.7209 0.6897 0.6252 0.4977

2 0.6307 0.6242 0.6001 0.5454 0.4400

3 0.6307 0.6073 0.5626 0.4907 0.3854

4 0.5744 0.5645 0.5429 0.4837 0.3553

5 0.5372 0.5234 0.4911 0.4484 0.3505
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  Mode 1     Mode 2      Mode 3      Mode 4    Mode 5 

Skew 
Angle 

0

λ 1.86648                    4.13717                       4.13717                        6.68906                 8.07507 

Skew 
Angle 

45

λ 2.89810                    5.49548                       6.13382                        8.51635                11.19775 

Fig. 11. The mode shapes of skew plates with cutout for SSSS–FFFF edge condition. (a/b=a’/b’=1.0, a’/a=

b’/b=0.25, h/b=0.1, n=0.3).

Fig. 12. The mode shapes of skew plates with cutout for CCCC–FFFF edge condition. (a/b=a’/b’=1.0, a’/a=

b’/b=0.25, h/b=0.1, n=0.3).
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Fig. 10. Frequency parameters for CCCC–FFFF edge condition with respect to skew angle (a/b=a’/b’=2.0, a’/a=

b’/b=0.5, h/b=0.1, n=0.3).
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Also the values of l are tabulated in Tables 11 and 12. In these tables, the first six frequency
parameters are presented for two aspect ratios (a/b=1.0 and 2.0), three skew angles (b=01, 301,
and 601), and two thickness–width ratios (h/b=0.001 and 0.1). It is noted that the frequency
parameters decrease as a/b ratio is increased from 1 to 2, and the plate becomes thicker. On the
other hand, a higher frequency response has been observed as the skew angle is increased, and the
edge constraints are more pronounced from SSSS–FFFF to CCCC–FFFF edge condition. These
results are very similar to the case without cutout.

5. Conclusions

Free vibration analysis of skew plates based on Mindlin theory based on p-version finite
element formulation and Houserholder QR iteration method was successfully implemented.
Numerical results were obtained for two different types of plate with/without cutout. Different
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Fig. 13. Comparison of non-dimensional frequencies of skew plates with cutout for SSSS–FFFF edge condition.
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combinations of boundary conditions, aspect ratios, skew angles and thickness/span ratios were
considered.
The study shows that the effects of shear deformation and rotatory inertia effect on the

frequency parameters are more significant for skew plates with relatively high values of thickness–
width ratios and skew angles. Also, it is noted that the frequency parameters decrease as a/b ratio
is increased, and the plate becomes thicker. On the other hand, a higher frequency response has
been observed as the skew angle is increased, and the edge constraints are more pronounced from
simply supported to clamped edges. As expected, convergence of frequency is monotonic from
above results as the p-level is increased from 1 to 13.

The p-version model presented herein offers a reliable tool for vibration analysis of skew plates,
as demonstrated by the numerous parametric studies. From the point of view of versatility,
accuracy, and economy of solution, it can be concluded that the p-version of the finite element
method is highly robust and appropriate technique for solving eigenvalue problems of the
continua.
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Table 11

Non-dimensional frequency parameters, l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
; of skew plates with cutout for SSSS–FFFF edge

condition (n=0.3)

a/b a’/a and b’/b b (deg) h/b Mode sequence number

1 2 3 4 5 6

0 0.001 1.9473 4.7048 4.7048 7.6195 9.6224 11.146

0.1 1.8665 4.1372 4.1372 6.6891 8.0751 9.4864

30 0.001 2.4400 5.1540 6.3896 8.4695 11.831 12.249

0.25 0.1 2.1855 4.4755 5.0336 7.2215 9.4625 9.8338

60 0.001 6.3059 10.116 14.658 15.582 20.912 26.354

1.0 0.1 4.5885 7.8816 8.1019 11.684 14.653 15.147

0 0.001 2.3791 4.1229 4.1229 7.2368 7.6755 11.472

0.1 2.2390 3.5357 3.5357 5.8642 6.3300 9.1526

30 0.001 2.9169 4.7444 4.9411 8.3797 8.7395 12.228

0.5 0.1 2.4579 3.6488 4.0892 6.3138 6.9907 9.6694

60 0.001 7.1301 9.5353 9.8689 14.915 16.138 21.165

0.1 4.4184 5.2624 6.9272 8.5279 11.255 13.785

0 0.001 1.1582 1.9634 3.3804 3.5094 4.7966 4.9781

0.1 1.1178 1.8624 2.9601 3.1142 4.3703 4.3806

30 0.001 1.4586 2.4014 3.8370 4.2525 5.8093 6.2042

0.25 0.1 1.3562 2.2242 3.3842 3.5090 4.7831 5.3889

60 0.001 3.4789 5.5958 8.1517 8.5565 10.392 14.462

0.1 2.9456 4.6631 5.2409 6.3613 7.9206 9.5680

2.0 0 0.001 1.3114 1.9878 2.4254 3.4824 4.2606 5.6052

0.1 1.2518 1.8474 2.0495 2.9679 3.8197 4.9375

30 0.001 1.6103 2.4232 2.7656 4.0023 4.9754 6.2150

0.5 0.1 1.4284 2.1302 2.2881 3.3348 4.2750 5.3272

60 0.001 3.6128 4.8268 5.5104 7.8953 8.8542 11.222

0.1 2.6189 3.2487 4.2327 5.2985 6.7937 8.4339
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